Modification of halogen specificity of a vanadium-dependent bromoperoxidase.

نویسندگان

  • Takashi Ohshiro
  • Jennifer Littlechild
  • Esther Garcia-Rodriguez
  • Michail N Isupov
  • Yasuaki Iida
  • Takushi Kobayashi
  • Yoshikazu Izumi
چکیده

The halide specificity of vanadium-dependent bromoperoxidase (BPO) from the marine algae, Corallina pilulifera, has been changed by a single amino acid substitution. The residue R397 has been substituted by the other 19 amino acids. The mutant enzymes R397W and R397F showed significant chloroperoxidase (CPO) activity as well as BPO activity. These mutant enzymes were purified and their properties were investigated. The maximal velocities of CPO activities of the R397W and R397F enzymes were 31.2 and 39.2 units/mg, and the K(m) values for Cl(-) were 780 mM and 670 mM, respectively. Unlike the native enzyme, both mutant enzymes were inhibited by NaN(3). In the case of the R397W enzyme, the incorporation rate of vanadate into the active site was low, compared with the R397F and the wild-type enzyme. These results supported the existence of a specific halogen binding site within the catalytic cleft of vanadium haloperoxidases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vanadium haloperoxidases.

The nature of the oxidized halogen intermediate in vanadium bromoperoxidase has recently been shown to depend on the nature of the organic substrate. For example, in the presence of indoles, vanadium bromoperoxidase does not release a freely diffusible oxidized halogen intermediate (such as HOBr+/-BR2+/-Br3-). Regioselective investigations are, therefore, now feasible.

متن کامل

Crystal structure of dodecameric vanadium-dependent bromoperoxidase from the red algae Corallina officinalis.

The three-dimensional structure of the vanadium bromoperoxidase protein from the marine red macroalgae Corallina officinalis has been determined by single isomorphous replacement at 2.3 A resolution. The enzyme subunit is made up of 595 amino acid residues folded into a single alpha+beta domain. There are 12 bromoperoxidase subunits, arranged with 23-point group symmetry. A cavity is formed by ...

متن کامل

Sulfoxidation mechanism of vanadium bromoperoxidase from Ascophyllum nodosum. Evidence for direct oxygen transfer catalysis.

We have previously shown that vanadium bromoperoxidase from Ascophyllum nodosum mediates production of the (R)-enantiomer of methyl phenyl sulfoxide with 91% enantiomeric excess. Investigation of the intrinsic selectivity of vanadium bromoperoxidase reveals that the enzyme catalyzes the sulfoxidation of methyl phenyl sulfide in a purely enantioselective manner. The K(m) of the enzyme for methyl...

متن کامل

Bromine is an endogenous component of a vanadium bromoperoxidase.

On the basis of EXAFS and MS/MS experimental results and a reinterpretation of the electron density map obtained by X-ray crystallography, we describe a new post-translational modification, that is, a 3,5-dibromotyrosine residue that is incorporated in the polypeptide chain of a vanadium haloperoxidase.

متن کامل

The bromoperoxidase from the lichen Xanthoria parietina is a novel vanadium enzyme.

A novel bromoperoxidase was isolated from the lichen Xanthoria parietina. The enzyme contained vanadium, which is essential for enzymic activity. Under denaturating conditions the preparation showed a single protein band with an Mr of 65,000. Thermal-denaturation studies showed that this bromoperoxidase could tolerate high temperatures. The affinity of the enzyme for its substrate bromide is hi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Protein science : a publication of the Protein Society

دوره 13 6  شماره 

صفحات  -

تاریخ انتشار 2004